Aliases: C62.4C32, 3- 1+2.A4, (C2×C6).8He3, C32.4(C3×A4), C3.9(C32⋊A4), C32.A4.2C3, C22⋊2(C3.He3), (C22×3- 1+2).1C3, (C3×C3.A4).2C3, SmallGroup(324,56)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — 3- 1+2 |
Generators and relations for C62.C32
G = < a,b,c,d | a6=b6=1, c3=d3=b2, ab=ba, cac-1=ab3, dad-1=ab2, cbc-1=a3b4, bd=db, dcd-1=a2b4c >
Character table of C62.C32
class | 1 | 2 | 3A | 3B | 3C | 3D | 6A | 6B | 6C | 6D | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | 9L | 18A | 18B | 18C | 18D | 18E | 18F | |
size | 1 | 3 | 1 | 1 | 3 | 3 | 3 | 3 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 36 | 36 | 36 | 36 | 9 | 9 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ10 | 3 | -1 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from A4 |
ρ11 | 3 | -1 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -1 | -1 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | 2 | 2 | -1+√-3 | -1-√-3 | complex lifted from C32⋊A4 |
ρ12 | 3 | -1 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -1 | -1 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1-√-3 | -1+√-3 | -1-√-3 | -1+√-3 | complex lifted from C32⋊A4 |
ρ13 | 3 | -1 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | complex lifted from C3×A4 |
ρ14 | 3 | -1 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -1 | -1 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | -1-√-3 | -1+√-3 | 2 | 2 | complex lifted from C32⋊A4 |
ρ15 | 3 | -1 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -1 | -1 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1+√-3 | -1-√-3 | -1+√-3 | -1-√-3 | complex lifted from C32⋊A4 |
ρ16 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3 |
ρ17 | 3 | -1 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -1 | -1 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | -1+√-3 | -1-√-3 | 2 | 2 | complex lifted from C32⋊A4 |
ρ18 | 3 | -1 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -1 | -1 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | 2 | 2 | -1-√-3 | -1+√-3 | complex lifted from C32⋊A4 |
ρ19 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3 |
ρ20 | 3 | -1 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | complex lifted from C3×A4 |
ρ21 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | ζ95+2ζ92 | 2ζ97+ζ94 | ζ97+2ζ9 | 2ζ94+ζ9 | ζ98+2ζ95 | 2ζ98+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.He3 |
ρ22 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | ζ97+2ζ9 | 2ζ98+ζ92 | ζ98+2ζ95 | ζ95+2ζ92 | 2ζ97+ζ94 | 2ζ94+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.He3 |
ρ23 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | ζ98+2ζ95 | 2ζ94+ζ9 | 2ζ97+ζ94 | ζ97+2ζ9 | 2ζ98+ζ92 | ζ95+2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.He3 |
ρ24 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 2ζ98+ζ92 | ζ97+2ζ9 | 2ζ94+ζ9 | 2ζ97+ζ94 | ζ95+2ζ92 | ζ98+2ζ95 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.He3 |
ρ25 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 2ζ94+ζ9 | ζ98+2ζ95 | ζ95+2ζ92 | 2ζ98+ζ92 | ζ97+2ζ9 | 2ζ97+ζ94 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.He3 |
ρ26 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 2ζ97+ζ94 | ζ95+2ζ92 | 2ζ98+ζ92 | ζ98+2ζ95 | 2ζ94+ζ9 | ζ97+2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.He3 |
ρ27 | 9 | -3 | -9-9√-3/2 | -9+9√-3/2 | 0 | 0 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 9 | -3 | -9+9√-3/2 | -9-9√-3/2 | 0 | 0 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(2 14)(3 15)(5 17)(6 18)(8 11)(9 12)(19 48 22 51 25 54)(20 49 23 52 26 46)(21 27 24)(28 31 34)(29 38 35 44 32 41)(30 39 36 45 33 42)(37 40 43)(47 53 50)
(1 10 4 13 7 16)(2 8 5)(3 12 6 15 9 18)(11 17 14)(19 25 22)(20 49 23 52 26 46)(21 50 24 53 27 47)(28 40 31 43 34 37)(29 35 32)(30 42 33 45 36 39)(38 44 41)(48 54 51)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 28 27 4 31 21 7 34 24)(2 32 19 5 35 22 8 29 25)(3 36 20 6 30 23 9 33 26)(10 40 47 13 43 50 16 37 53)(11 44 48 14 38 51 17 41 54)(12 39 49 15 42 52 18 45 46)
G:=sub<Sym(54)| (2,14)(3,15)(5,17)(6,18)(8,11)(9,12)(19,48,22,51,25,54)(20,49,23,52,26,46)(21,27,24)(28,31,34)(29,38,35,44,32,41)(30,39,36,45,33,42)(37,40,43)(47,53,50), (1,10,4,13,7,16)(2,8,5)(3,12,6,15,9,18)(11,17,14)(19,25,22)(20,49,23,52,26,46)(21,50,24,53,27,47)(28,40,31,43,34,37)(29,35,32)(30,42,33,45,36,39)(38,44,41)(48,54,51), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,28,27,4,31,21,7,34,24)(2,32,19,5,35,22,8,29,25)(3,36,20,6,30,23,9,33,26)(10,40,47,13,43,50,16,37,53)(11,44,48,14,38,51,17,41,54)(12,39,49,15,42,52,18,45,46)>;
G:=Group( (2,14)(3,15)(5,17)(6,18)(8,11)(9,12)(19,48,22,51,25,54)(20,49,23,52,26,46)(21,27,24)(28,31,34)(29,38,35,44,32,41)(30,39,36,45,33,42)(37,40,43)(47,53,50), (1,10,4,13,7,16)(2,8,5)(3,12,6,15,9,18)(11,17,14)(19,25,22)(20,49,23,52,26,46)(21,50,24,53,27,47)(28,40,31,43,34,37)(29,35,32)(30,42,33,45,36,39)(38,44,41)(48,54,51), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,28,27,4,31,21,7,34,24)(2,32,19,5,35,22,8,29,25)(3,36,20,6,30,23,9,33,26)(10,40,47,13,43,50,16,37,53)(11,44,48,14,38,51,17,41,54)(12,39,49,15,42,52,18,45,46) );
G=PermutationGroup([[(2,14),(3,15),(5,17),(6,18),(8,11),(9,12),(19,48,22,51,25,54),(20,49,23,52,26,46),(21,27,24),(28,31,34),(29,38,35,44,32,41),(30,39,36,45,33,42),(37,40,43),(47,53,50)], [(1,10,4,13,7,16),(2,8,5),(3,12,6,15,9,18),(11,17,14),(19,25,22),(20,49,23,52,26,46),(21,50,24,53,27,47),(28,40,31,43,34,37),(29,35,32),(30,42,33,45,36,39),(38,44,41),(48,54,51)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,28,27,4,31,21,7,34,24),(2,32,19,5,35,22,8,29,25),(3,36,20,6,30,23,9,33,26),(10,40,47,13,43,50,16,37,53),(11,44,48,14,38,51,17,41,54),(12,39,49,15,42,52,18,45,46)]])
Matrix representation of C62.C32 ►in GL6(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 3 | 7 | 0 |
0 | 0 | 0 | 10 | 3 | 11 |
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 0 | 13 | 13 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 2 | 0 |
0 | 0 | 0 | 8 | 17 | 5 |
0 | 0 | 0 | 1 | 0 | 1 |
G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,3,10,0,0,0,0,7,3,0,0,0,0,0,11],[18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,5,0,13,0,0,0,0,5,13,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,8,1,0,0,0,2,17,0,0,0,0,0,5,1] >;
C62.C32 in GAP, Magma, Sage, TeX
C_6^2.C_3^2
% in TeX
G:=Group("C6^2.C3^2");
// GroupNames label
G:=SmallGroup(324,56);
// by ID
G=gap.SmallGroup(324,56);
# by ID
G:=PCGroup([6,-3,-3,-3,-3,-2,2,162,145,115,224,4864,8753]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=1,c^3=d^3=b^2,a*b=b*a,c*a*c^-1=a*b^3,d*a*d^-1=a*b^2,c*b*c^-1=a^3*b^4,b*d=d*b,d*c*d^-1=a^2*b^4*c>;
// generators/relations
Export
Subgroup lattice of C62.C32 in TeX
Character table of C62.C32 in TeX