Copied to
clipboard

G = C62.C32order 324 = 22·34

4th non-split extension by C62 of C32 acting faithfully

metabelian, soluble, monomial

Aliases: C62.4C32, 3- 1+2.A4, (C2×C6).8He3, C32.4(C3×A4), C3.9(C32⋊A4), C32.A4.2C3, C222(C3.He3), (C22×3- 1+2).1C3, (C3×C3.A4).2C3, SmallGroup(324,56)

Series: Derived Chief Lower central Upper central

C1C62 — C62.C32
C1C22C2×C6C62C3×C3.A4 — C62.C32
C22C2×C6C62 — C62.C32
C1C3C323- 1+2

Generators and relations for C62.C32
 G = < a,b,c,d | a6=b6=1, c3=d3=b2, ab=ba, cac-1=ab3, dad-1=ab2, cbc-1=a3b4, bd=db, dcd-1=a2b4c >

3C2
3C3
3C6
9C6
3C9
12C9
12C9
12C9
3C2×C6
3C3×C6
3C18
3C18
3C18
43- 1+2
4C3×C9
43- 1+2
3C3.A4
3C3.A4
3C2×C18
3C3.A4
3C2×3- 1+2
4C3.He3

Character table of C62.C32

 class 123A3B3C3D6A6B6C6D9A9B9C9D9E9F9G9H9I9J9K9L18A18B18C18D18E18F
 size 13113333999912121212121236363636999999
ρ11111111111111111111111111111    trivial
ρ2111111111111ζ3ζ32ζ32ζ32ζ3ζ3ζ3ζ32ζ32ζ3111111    linear of order 3
ρ31111111111ζ3ζ32ζ32ζ3ζ3ζ3ζ32ζ321ζ321ζ3ζ3ζ32ζ32ζ3ζ3ζ32    linear of order 3
ρ4111111111111ζ32ζ3ζ3ζ3ζ32ζ32ζ32ζ3ζ3ζ32111111    linear of order 3
ρ51111111111ζ32ζ3ζ3ζ32ζ32ζ32ζ3ζ31ζ31ζ32ζ32ζ3ζ3ζ32ζ32ζ3    linear of order 3
ρ61111111111ζ32ζ3ζ32ζ3ζ3ζ3ζ32ζ32ζ31ζ321ζ32ζ3ζ3ζ32ζ32ζ3    linear of order 3
ρ71111111111ζ3ζ32ζ3ζ32ζ32ζ32ζ3ζ3ζ321ζ31ζ3ζ32ζ32ζ3ζ3ζ32    linear of order 3
ρ81111111111ζ32ζ3111111ζ32ζ32ζ3ζ3ζ32ζ3ζ3ζ32ζ32ζ3    linear of order 3
ρ91111111111ζ3ζ32111111ζ3ζ3ζ32ζ32ζ3ζ32ζ32ζ3ζ3ζ32    linear of order 3
ρ103-13333-1-1-1-1330000000000-1-1-1-1-1-1    orthogonal lifted from A4
ρ113-133-3-3-3/2-3+3-3/2-1-1ζ65ζ6000000000000-1--3-1+-322-1+-3-1--3    complex lifted from C32⋊A4
ρ123-133-3-3-3/2-3+3-3/2-1-1ζ65ζ600000000000022-1--3-1+-3-1--3-1+-3    complex lifted from C32⋊A4
ρ133-13333-1-1-1-1-3+3-3/2-3-3-3/20000000000ζ65ζ6ζ6ζ65ζ65ζ6    complex lifted from C3×A4
ρ143-133-3+3-3/2-3-3-3/2-1-1ζ6ζ65000000000000-1--3-1+-3-1--3-1+-322    complex lifted from C32⋊A4
ρ153-133-3+3-3/2-3-3-3/2-1-1ζ6ζ6500000000000022-1+-3-1--3-1+-3-1--3    complex lifted from C32⋊A4
ρ163333-3+3-3/2-3-3-3/233-3-3-3/2-3+3-3/2000000000000000000    complex lifted from He3
ρ173-133-3-3-3/2-3+3-3/2-1-1ζ65ζ6000000000000-1+-3-1--3-1+-3-1--322    complex lifted from C32⋊A4
ρ183-133-3+3-3/2-3-3-3/2-1-1ζ6ζ65000000000000-1+-3-1--322-1--3-1+-3    complex lifted from C32⋊A4
ρ193333-3-3-3/2-3+3-3/233-3+3-3/2-3-3-3/2000000000000000000    complex lifted from He3
ρ203-13333-1-1-1-1-3-3-3/2-3+3-3/20000000000ζ6ζ65ζ65ζ6ζ6ζ65    complex lifted from C3×A4
ρ2133-3+3-3/2-3-3-3/200-3-3-3/2-3+3-3/20000ζ95+2ζ929794ζ97+2ζ9949ζ98+2ζ9598920000000000    complex lifted from C3.He3
ρ2233-3-3-3/2-3+3-3/200-3+3-3/2-3-3-3/20000ζ97+2ζ99892ζ98+2ζ95ζ95+2ζ9297949490000000000    complex lifted from C3.He3
ρ2333-3+3-3/2-3-3-3/200-3-3-3/2-3+3-3/20000ζ98+2ζ959499794ζ97+2ζ99892ζ95+2ζ920000000000    complex lifted from C3.He3
ρ2433-3+3-3/2-3-3-3/200-3-3-3/2-3+3-3/200009892ζ97+2ζ99499794ζ95+2ζ92ζ98+2ζ950000000000    complex lifted from C3.He3
ρ2533-3-3-3/2-3+3-3/200-3+3-3/2-3-3-3/20000949ζ98+2ζ95ζ95+2ζ929892ζ97+2ζ997940000000000    complex lifted from C3.He3
ρ2633-3-3-3/2-3+3-3/200-3+3-3/2-3-3-3/200009794ζ95+2ζ929892ζ98+2ζ95949ζ97+2ζ90000000000    complex lifted from C3.He3
ρ279-3-9-9-3/2-9+9-3/2003-3-3/23+3-3/200000000000000000000    complex faithful
ρ289-3-9+9-3/2-9-9-3/2003+3-3/23-3-3/200000000000000000000    complex faithful

Smallest permutation representation of C62.C32
On 54 points
Generators in S54
(2 14)(3 15)(5 17)(6 18)(8 11)(9 12)(19 48 22 51 25 54)(20 49 23 52 26 46)(21 27 24)(28 31 34)(29 38 35 44 32 41)(30 39 36 45 33 42)(37 40 43)(47 53 50)
(1 10 4 13 7 16)(2 8 5)(3 12 6 15 9 18)(11 17 14)(19 25 22)(20 49 23 52 26 46)(21 50 24 53 27 47)(28 40 31 43 34 37)(29 35 32)(30 42 33 45 36 39)(38 44 41)(48 54 51)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 28 27 4 31 21 7 34 24)(2 32 19 5 35 22 8 29 25)(3 36 20 6 30 23 9 33 26)(10 40 47 13 43 50 16 37 53)(11 44 48 14 38 51 17 41 54)(12 39 49 15 42 52 18 45 46)

G:=sub<Sym(54)| (2,14)(3,15)(5,17)(6,18)(8,11)(9,12)(19,48,22,51,25,54)(20,49,23,52,26,46)(21,27,24)(28,31,34)(29,38,35,44,32,41)(30,39,36,45,33,42)(37,40,43)(47,53,50), (1,10,4,13,7,16)(2,8,5)(3,12,6,15,9,18)(11,17,14)(19,25,22)(20,49,23,52,26,46)(21,50,24,53,27,47)(28,40,31,43,34,37)(29,35,32)(30,42,33,45,36,39)(38,44,41)(48,54,51), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,28,27,4,31,21,7,34,24)(2,32,19,5,35,22,8,29,25)(3,36,20,6,30,23,9,33,26)(10,40,47,13,43,50,16,37,53)(11,44,48,14,38,51,17,41,54)(12,39,49,15,42,52,18,45,46)>;

G:=Group( (2,14)(3,15)(5,17)(6,18)(8,11)(9,12)(19,48,22,51,25,54)(20,49,23,52,26,46)(21,27,24)(28,31,34)(29,38,35,44,32,41)(30,39,36,45,33,42)(37,40,43)(47,53,50), (1,10,4,13,7,16)(2,8,5)(3,12,6,15,9,18)(11,17,14)(19,25,22)(20,49,23,52,26,46)(21,50,24,53,27,47)(28,40,31,43,34,37)(29,35,32)(30,42,33,45,36,39)(38,44,41)(48,54,51), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,28,27,4,31,21,7,34,24)(2,32,19,5,35,22,8,29,25)(3,36,20,6,30,23,9,33,26)(10,40,47,13,43,50,16,37,53)(11,44,48,14,38,51,17,41,54)(12,39,49,15,42,52,18,45,46) );

G=PermutationGroup([[(2,14),(3,15),(5,17),(6,18),(8,11),(9,12),(19,48,22,51,25,54),(20,49,23,52,26,46),(21,27,24),(28,31,34),(29,38,35,44,32,41),(30,39,36,45,33,42),(37,40,43),(47,53,50)], [(1,10,4,13,7,16),(2,8,5),(3,12,6,15,9,18),(11,17,14),(19,25,22),(20,49,23,52,26,46),(21,50,24,53,27,47),(28,40,31,43,34,37),(29,35,32),(30,42,33,45,36,39),(38,44,41),(48,54,51)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,28,27,4,31,21,7,34,24),(2,32,19,5,35,22,8,29,25),(3,36,20,6,30,23,9,33,26),(10,40,47,13,43,50,16,37,53),(11,44,48,14,38,51,17,41,54),(12,39,49,15,42,52,18,45,46)]])

Matrix representation of C62.C32 in GL6(𝔽19)

100000
0180000
0018000
000100
000370
00010311
,
1800000
0180000
001000
000700
000070
000007
,
010000
001000
100000
000500
000050
000131316
,
100000
010000
001000
000120
0008175
000101

G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,3,10,0,0,0,0,7,3,0,0,0,0,0,11],[18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,5,0,13,0,0,0,0,5,13,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,8,1,0,0,0,2,17,0,0,0,0,0,5,1] >;

C62.C32 in GAP, Magma, Sage, TeX

C_6^2.C_3^2
% in TeX

G:=Group("C6^2.C3^2");
// GroupNames label

G:=SmallGroup(324,56);
// by ID

G=gap.SmallGroup(324,56);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,162,145,115,224,4864,8753]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^3=d^3=b^2,a*b=b*a,c*a*c^-1=a*b^3,d*a*d^-1=a*b^2,c*b*c^-1=a^3*b^4,b*d=d*b,d*c*d^-1=a^2*b^4*c>;
// generators/relations

Export

Subgroup lattice of C62.C32 in TeX
Character table of C62.C32 in TeX

׿
×
𝔽